SW STAHL PROFESSIONAL TOOLS

BEDIENUNGSANLEITUNG

Inhaltsverzeichnis

ÜBERSCHRIFT	SEITE
1. GRUNDSÄTZLICHE HINWEISE	1
1.1 Vorsichtsmaßnahmen 1.1.1 Vorbereitend 1.1.2 Während des Gebrauchs 1.1.3 Symbole 1.1.4 Anleitung	1 1 2 5 6
2. BESCHREIBUNG 2.1 Geräteeinweisungen 2.2 LCD Display 2.3 Tastatur 2.4 Drehschalter 2.5 Anschlüsse 2.6 Zubehör	7 7 8 11 12 13
3. FUNKTIONSBESCHREIBUNG 3.1 Allgemeines 3.1.1 Datenspeicherung 3.1.2 Manuelle und autom. Auswahl 3.1.3 Batteriesparfunktion	14 14 14 14 15
3.2 Messfunktionen 3.2.1 Wechsel- und Gleichspannungs-	16 16
messung 3.2.2 Widerstandsmessung 3.2.3 Diodentest 3.2.4 Kontinuitätsprüfung 3.2.5 Kapazitätsmessung 3.2.6 Frequenzmessung	17 19 20 21 22

SW STAHL

3.2.7 Transistormessung	23
3.2.8 Strommessung (mit Klemme, optional)	23
3.2.9 Strommessung	24
vitoriactorists — Chiestotic total autoparation in the chiestotic transfer tr	
4. TECHNISCHE SPEZIFIKATIONEN	26
4.1 Allgemeine Spezifikationen	26
4.2 Messspezifikationen	27
4.2.1 Gleichspannung	27
4.2.2 Wechselspannung	28
4.2.3 Widerstand	28
4.2.4 Diodentest	29
4.2.5 Kontinuitätsprüfung	29
4.2.6 Transistoren	29
4.2.7 Kapazität	30
4.2.8 Frequenz	30
4.2.9 Strom (mit Klemme, optional)	31
4.2.10 Gleichstrom	31
4.2.11 Wechselstrom	32
5. WARTUNG	33
	33
5.1 Allgemeine Wartung	34
5.2 Batterie- und Sicherungswechsel	04
6 RENUTZUNG DES HOLSTERS	34

1. GRUNDSÄTZLICHE HINWEISE

Dieser Multimeter wurde entsprechend IEC-1010 für Messinstrumente mit Uberspannungsund Schadstoffkategorie 2 (CAT II) entwickelt. Sehen Sie dazu die Spezifikationen.

Befolgen Sie alle Sicherheits- und Bedienungsanweisungen um sicherzugehen, dass das Gerät ordnungsgemäß genutzt wird und in einem guten Zustand bleibt.

Die international verwendeten Symbole zu diesem Gerät werden in Kapitel 1.1.3 erklärt.

1.1 Vorsichtsmaßnahmen

1.1.1 Vorbereitend

- * Messungskategorie III gilt für Messungen in Gebäuden und an Installationen.
 - HINWEIS: Beispiele dafür sind: Messungen Stromverteilern, Stromkreisstörungen, Verkabelungen wie z.B. Sicherungskästen, Schalter. Steckdosen. Ausrüstungsgegenstände für den industriellen Gebrauch, sowie fest stehende Motoren mit steter Verbindung einem festen Installationsaufbau
- * Messungskategorie II gilt für Messungen an Stromkreisen, die direkt mit Niederspannnungsinstallationen verbunden sind.
 - HINWEIS: Beispiele dafür sind: Messungen Haushaltsgeräten, tragbaren Maschinen und Werkzeugen sowie ähnlichen Ausstattungen.
- * Messungskategorie I gilt für Messungen an Stromkreisen, die nicht direkt an eine Hauptleitung angeschlossen sind. HINWEIS: Beispiele dafür sind: Messungen

an

Stromkreisen, die nicht an Hauptleitungen angeschlossen sind und speziell isolierte interne Schaltungen. Im letzten Fall kann es zu vorübergehenden Unregelmäßigkeiten kommen, weshalb der Benutzer sich im Vorfeld über die maximale Widerstandskapazität gegenüber solcher vorübergehende Unregelmäßigkeiten des zu prüfenden Instruments informieren sollte.

- * Bei der Benutzung des Multimeters sollte der Benutzer alle gebräuchlichen Vorsichtsmaßnahmen beachten. Zu diesen gehören unter anderem:
- Schutz vor der Gefahr eines Stromschlags.
- Schutz des Multimeters vor missbräuchlicher Verwendung.
- * Volle Sicherheit kann nur mit den mitgelieferten Test-Kabeln gewährleistet werden. Falls notwendig, müssen diese mit solchen ersetzt werden, wie sie in dieser Anleitung spezifiziert sind.

1.1.2 Während des Gebrauchs

- * Wenn der Multimeter in unmittelbarer Nähe von stark lärmenden Maschinen benutzt wird, kann das Display Störungen aufweisen.
- * Benutzen Sie den Multimeter oder die mitgelieferten Testspitzen nicht, wenn sie beschädigt aussehen.
- * Verwenden Sie den Multimeter nur in der in dieser Anleitung beschriebenen Weise.
- * Seien Sie bei der Arbeit an Stromschienen und offen liegenden Leitern äußerst vorsichtig.
- * Verwenden Sie das Gerät niemals in unmittelbarer Nähe von explosiven Gasen, Dämpfen oder Staub.

- * Testen Sie die Einstellungen des Geräts am besten an einem Ihnen bekannten Stromkreis um zu sehen, ob die Messwerte stimmen. Verwenden Sie das Gerät nicht, wenn es ungewöhnlich arbeitet oder falsche Werte anzeigt. Im Zweifelsfall lassen Sie das Gerät professionell warten.
- * Verwenden Sie nur passendes Zubehör und passende Testspitzen für Ihre Messungen.
- * Wenn der Messbereich vor Beginn der Messung unklar ist, setzten Sie die Toleranz auf Maximum oder benutzen Sie den Automodus.
- * Überschreiten Sie niemals die für den jeweiligen Spannungsbereich angegebenen Grenzwerte.
- * Wenn das Gerät in einen Strom-Kreislauf eingespeist ist, berühren Sie niemals einen der unbenutzten freien Anschlüsse
- * Achtung bei der Arbeit mit Spannung über 60V Gleichspannung oder 30V Wechselspannung rms. Es besteht die Gefahr eines Stromschlags.
- * Bei der Arbeit mit Prüfspitzen behalten Sie ihre Finger hinter dem Fingerschutz.
- * Schließen Sie die stromführende Leitung immer zuletzt an und trennen Sie diese Leitung nach der Messung wieder als erste.
- * Trennen Sie die Testspitzen vom Stromkreis bevor Sie die Messfunktion ändern.
- *Für alle Gleichstromfunktionen, inkl. der manuellen und automatischen Bereichsauswahl: Zum Schutz vor Stromschlägen aufgrund einer ungenauen Messung sollten

- Sie zuvor das Aufkommen von Wechselstrom oder –spannung prüfen. Erst anschließend wählen Sie die entsprechende Gleichstrom oder –spannungsfunktion gleichen oder sogar größeren Messbereichs.
- * Wenn Sie beabsichtigen Sicherungen zu testen, stellen Sie vorher sicher dass die Test-Kabel vom Stromkreislauf abgekoppelt sind.
- * Geräte sollten mit der hFE-Dose verbunden sein, wenn Sie Messungen mit den Test-Kabeln durchführen
- * Vor dem Test von Dioden, Widerständen, Kapazitäten oder Kontinuitäten koppeln Sie das Gerät von allen Stromkreisen ab
- * Führen Sie niemals Widerstandsmessungen in aktiven Stromkreisläufen durch.
- * Vor Strommessungen testen Sie die Sicherung des Multimeters und schalten Sie die Stromzufuhr zum zu prüfenden Stromkreis ab bevor Sie den Multimeter anschließen.
- * Wenn Sie Messungen an einem Fernseher oder einem Wechselstromgerät durchführen, beachten Sie bitte, dass hierbei hohe Impuls-Spannungen auftreten können, die dass Messgerät beschädigen. Verwenden Sie einen TV-FILTER zum Schutz gegen solche Impulsspannungen.
- * Verwenden Sie die mitgelieferte 9V Batterie um das Gerät mit Strom zu versorgen.
- * Sobald die Batterieanzeige im Display erscheint wechseln Sie die Batterie aus. () Bei einer Unterversorgung durch eine schwache Batterie kann es zu falschen

Messwerten kommen, welche wiederum die Gefahr eines Stromschlags hervorrufen.

- * Benutzen Sie das Gerät niemals um Spannungen zu messen die geerdete Spannungen von 600V in CAT 2
- * Niemals den Multimeter benutzen wenn die rückseitige Schale oder andere Teile der Hülle nicht angebracht oder fest sind.

1.1.3 Symbole:

Symbole in dieser Anleitung oder am Gerät:

ACHTUNG: sehen Sie in der Gebrauchsanleitung nach. Unsachgemäßer Gebrauch kann zu

Schäden am Gerät und Verletzungen führen.

ACHTUNG HOCHSPANNUNG.

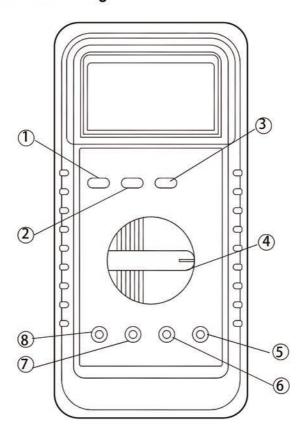
➤ AC (Wechselstrom)

DC (Gleichstrom)

≟ Erdung

Doppelte Isolierung

Sicherung


C € Nach EU-Richtlinie

1.1.4 Anleitung

- * Koppeln Sie das Gerät von Stromkreisen ab und stellen Sie sicher, dass Sie nicht statisch aufgeladen sind, bevor sie die Hülle öffnen um Batterie oder Sicherung zu ersetzen. Es besteht sonst die Gefahr das Gerät zu beschädigen oder sich zu verletzen.
- * Verwenden Sie nur Originalteile.
- * Einstellung, Wartungen und Reparaturen jeglicher Art sollten nur von fachkundigem Personal durchgeführt werden. Die Gebrauchsanleitung sollte konsultiert werden.
- * "Qualifiziertes Personal" meint: Personen, die mit den Funktionen und den Gefahren des Geräts vertraut sind. Überdies sollte er in der Arbeit mit Elektrizität und Spannungen ausgebildet sein.
- * Wenn die Hülle des Gerät geöffnet wird, denken Sie daran: Es können noch gefährliche Restbestände an Spannung und Strom in den internen Komponenten des Geräts gespeichert sein. Selbst dann, wenn das Gerät ausgeschaltet wurde.
- * Sollte es bei dem Gebrauch des Geräts zu Auffälligkeiten kommen, geben Sie das Gerät in die Hände von qualifiziertem Wartungspersonal. Stellen Sie sicher, dass das Gerät nicht weiter verwendet wird.
- * Planen Sie das Gerät für eine längere Zeit nicht zu benutzen, entfernen Sie die Batterie und lagern Sie das Gerät dort, wo es keinen hohen Temperaturen und Luftfeuchtigkeit ausgesetzt ist.

2. BESCHREIBUNG

2.1 Geräteeinweisungen

- ① Bereichskontrollknopf
- 2 Datenspeicherungsknopf
- ③ AC/DC Strom oder ·□/ → Wahlschalter
- 4 Funktionsschalter/An-/Aus-Schalter

- ⑤ V/Ω/F/Cx Eingangsbuchse
- **⑥** COM Eingangsbuchse
- 7 mA/ Eingangsbuchse / Transistorentest
- 8 10A Eingangsbuchse

2.2 LCD Display

Siehe Tabelle 1 für weitere Informationen zum LCD Display.

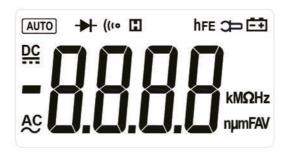


Tabelle 1. Display Symbole

Symbol	Bedeutung		
큳	Die Batterie ist leer. Warnung: Um falsche Messwerte zu vermeiden, welche zu Schäden am Gerät oder Verletzungen führen könnten, sollte die Batterie ersetzt werden.		
1	Zeigt negative Werte an.		
ĄÇ	Zeigt Wechselspannung / -strom an. Wechselspannung und -strom werden als Durchschnittswerte des aktuellen Inputs angezeigt, kalibriert um die entsprechenden rms-Werte einer Sinuskurve anzuzeigen.		
DC	Zeigt Gleichspannung / -strom an.		
AUTO	Der Multimeter ist im Automodus und bestimmt den Messwertbereich mit der besten Auflösung selbst.		
*	Zeigt Diodentest an.		
hFE	Zeigt Transistorentest an.		
01))	Zeigt Kontinuitätsprüfung an.		
	Zeigt Datenspeicherung an.		
V, mV	V: Volt. Maßeinheit von Spannungen mV: Millivolt. 1x10 ⁻³ oder 0.001 Volt.		

Symbol	Bedeutung
A, mA, μA	 A: Ampere (amp). Maßeinh. von Strom. mA: Milliamp. 1x10⁻³ oder 0.001 amp. μA: Microamp. 1x10⁻⁶ oder 0.000001 amp.
Ω, kΩ, ΜΩ	Ω: Ohm. Maßeinheit des Widerstands. k $Ω$: KiloOhm. 1x10 ³ oder 1000 Ohm. M $Ω$: MegaOhm. 1x10 ⁶ oder 1,000,000 Ohm.
Hz, kHz, MHz	Hz: Hertz. Maßeinheit der Frequenz in U/sec. KHz: KiloHertz. 1x10 ³ oder 1000 Hertz. MHz: MegaHertz. 1x10 ⁶ oder 1,000,000 Hertz.
μ F , nF	 F: Farad. Maßeinheit der Kapazität. μF: Microfarad.1x10⁻⁶ oder 0.000001 farad. nF: Nanofarad. 1x10⁻⁹ oder 0.000000001 farad.
OL	Der Eingangswert ist zu hoch für das Gerät.

2.3 Tastatur

Siehe Tabelle 2 für weitere Informationen zur Tastatur.

Tabelle 2. Tastatur

Taste	Funktion	Ausgeführte Operation
((1°/ → + /~	••••)	Wechsel zw. Diodentest und Kontinuitätsprüfung.
	⊅ AmAμA	Wechsel zw. Gleich- und Wechselstrom.
	Stromverbrauch	Schaltet Stromsparmodus ab.
DATA-H	Jegliche Schalterposition	HOLD-Taste drücken um den Datenspeichermodus zu betreten und zu verlassen.
RANGE	V~, V, Ω, ϽΦ, mA and μA.	1. RANGE-Taste drücken für den manuellen Modus 2. RANGE-Taste drücken um zw. den verfügbaren Messbereichen zu wechseln. RANGE-Taste für 2 Sek. gedrückt halten = Zurück zum Automodus.

2.4 Drehschalter

Siehe Tabelle 3 für weitere Informationen.

Tabelle 3. Drehschalterpositionen

Schalterstellung	Funktion	
V~	Wechselspannungsmessung	
V	Gleichspannungsmessung	
Ω	Widerstandsmessung	
•••))	Diodentest / Kontinuitätsprüfung	
Сар	Kapazitätsmessung	
Hz	Frequenzmessung	
hFE	Transistorenmessung	
⊅	Messung mit Klemme (optional), erweitert die Einsetzbarkeit des Multimeters	
μА	Gleich- oder Wechselstrommessung von 0.1μA bis 4000μA.	
mA	Gleich- oder Wechselstrommessung von 0.01mA bis 400mA.	
Α	Gleich- oder Wechselstrommessung von 0.01A bis 10.00A.	

2.5 Anschlüsse

Siehe Tabelle 4 für weitere Informationen.

Tabelle 4. Anschlüsse

Anschluss	Beschreibung		
сом	Rückflussanschluss für alle Messungen. Für das schwarze Testkabel oder den "COM" Stecker der optionalen Klemme.		
VΩFCx	Eingang für Spannungs-, Widerstands-, Frequenz-, Kapazitäts-, Dioden- und Kontinuitätsprüfung. (Für das rote Testkabel)		
αCAm	Eingang für 0.1μA bis 400mA Strommessungen. Für das rote Testkabel oder den "+" Stecker der optionalen Klemme.		
А	Eingang für 400mA bis 10A Strommessungen (Für das rote Testkabel)		

2.6 Zubehör

Mitgeliefert mit dem Multimeter

- Gebrauchsanleitung
- Tragetasche / Case
- Testkabel
- Holster

Optional:

Klemme

3. FUNKTIONSBESCHREIBUNG

3.1 Allgemeines

3.1.1 Datenspeicherung

Die Datenspeicherfunktion lässt das automatische Erneuern der digitalen Anzeige stoppen und zeigt einen Wert länger an. Die Verwendung der Datenspeicherung im Automodus lässt das Gerät direkt in den manuellen Modus wechseln. Dabei bleibt der gesamte Messbereich jedoch unberührt. Die Datenspeicherfunktion kann durch Drücken der RANGE- oder der HOLD-Taste wieder aufgehoben werden.

Um den Datenspeicher zu betreten und wieder zu verlassen:

- HOLD-Taste kurz drücken H wird angezeigt. Der aktuelle Wert ist gespeichert im Display.
- Ein zweites kurzes Drücken der Taste lässt das Gerät in den normalen Betrieb zurückkehren.

3.1.2 Manuelle und automatische Auswahl

Der Multimeter lässt sich manuell wie auch automatisch steuern.

- * Im Automodus wählt das Gerät den Messbereich mit der besten Auflösung und Darstellungsmöglichkeit automatisch. So können Sie Testpunkte wechseln ohne den Messbereich neu zu justieren.
- * Im manuellen Modus bestimmen Sie den jeweiligen Messbereich selbst. So k\u00f6nnen Sie den jeweiligen automatisch gew\u00e4hlten Messbereich \u00fcberschreiten und den gemessenen Wert.
- * Das Gerät fällt in den Automodus zurück, sobald Sie

Messfunktionen benutzen, die mehr als einen Messbereich aufweisen können. Wenn sich das Gerät im Automodus befindet erscheint **AUTO** in der Anzeige.

Um den manuellen Modus zu betreten und zu verlassen:

 Drücken Sie die RANGE-Taste. Das Gerät ist im manuellen Modus. Die AUTO-Anzeige erlischt. Jedes weitere Drücken der RANGE-Taste lässt das Gerät in einen neuen Messbereich springen. Nach dem höchstmöglichen Messbereich sprint das Gerät zurück in den niedrigsten Messbereich.

HINWEIS: Wenn Sie den Messbereich manuell wechseln während Sie sich im Datenspeichermodus befinden, beendet das Gerät diesen Modus im Anschluss.

 Um den manuellen Auswahl zu verlassen, drücken Sie die RANGE-Taste und halten Sie die Taste für zwei Sekunden gedrückt. Das Gerät wechselt in den Automodus und zeigt AUTO im Display an.

3.1.3 Batteriesparfunktion

Das Gerät schaltet in den Schlafmodus und schaltet das Display ab, sobald es länger als 30 min. nicht genutzt wird. Drücken Sie die **HOLD**-Taste oder betätigen Sie den Drehschalter um das Gerät wieder "aufzuwecken".

Um den Schlafmodus völlig auszuschalten, drücken Sie

3.2 Messfunktionen

3.2.1 Wechsel- und Gleichspannungsmessung

Um einen Stromschlag oder Beschädigung am Gerät zu vermeiden, messen Sie keine Werte über 600VDC oder 600VAC rms.

Um einen Stromschlag oder Beschädigung am Gerät zu vermeiden, belasten Sie das Gerät nicht mit mehr als 600VDC oder 600VAC rms zwischen der Messdiode und der Erdung.

Die Polarität von Wechselspannung (AC) variiert, während die Polarität von Gleichspannungen (DC) immer konstant bleibt

Der Messbereich des Geräts für Gleichspannung reicht von 400.0mV über 4.000V, 40.00V, 400.0V bis hin zu 600V; der Wechselspannungsbereich reicht von 400.0mV über 4.000V, 40.00V, 400.0V bis hin zu 600V.

(AC 400.0mV ist nur auf manuellem Wege anzusteuern).

Spannungsmessung (AC + DC):

- 1. Drehschalter auf DCV- oder ACV-Messung stellen.
- Verbinden Sie die rote und schwarze Testspitze mit dem COM- bzw. dem V-Anschluss.
- Verbinden Sie die Testspitzen mit dem zu messenden Stromkreis.
- Lesen Sie den Messwert vom Display ab. Die Polarität der rotten Testspitze wird bei einer DCV-Messung angezeigt.

HINWEIS:

Eine flackernde Anzeige kann besonders bei Messungen

im Bereich von 400mV vorkommen, selbst dann, wenn die Testspitzen nicht in die Eingangsbuchsen geführt worden sind. Sollten Sie eine fehlerhafte Messung vermuten, überbrücken Sie den COM- und den V-Anschluss und prüfen Sie, ob das Display null anzeigt.

• Für eine höhere Messgenauigkeit des DC-Abstands zu einer AC-Messung. prüfen Sie den zuerst Wechselspannungswert. Notieren Sie diesen Messwert und wählen Sie dann manuell einen DC-Messbereich aleicher höherer Intensität. Auf diese oder Weiseverhindern Sie die Aktivierung der Eingangssicherung.

3.2.2 Widerstandsmessung

Um einen Stromschlag oder Beschädigung am Gerät zu vermeiden, trennen Sie das Gerät von jeglichen Stromkreisen und lassen Sie alle Spannungsspeicher entladen, bevor Sie eine Widerstandsmessung beginnen.

Die Messeinheit von Widerständen ist Ohm (Ω) . Das Gerät misst Widerstände, indem es minimale Spannungen durch den zu testenden Stromkreis schickt. Diese Spannung durchläuft nun alle denkbaren Leiter und Bahnen des Stromkreises auf dem Weg zurück in das Messgerät. Auf diese Weise kann der gesamte Widerstand eines Stromkreises gemessen werden.

Der Messbereich des Geräts geht von 400.0Ω über $4.000k\Omega$, $40.00k\Omega$, $400.0k\Omega$, $4.000M\Omega$ bis zu $40.00M\Omega$.

Widerstandsmessung:

- Drehschalter auf Ω stellen.
- Verbinden Sie die rote und schwarze Testspitze mit dem COM- bzw. dem V-Anschluss.
- Verbinden Sie die Testspitzen mit dem zu messenden Stromkreis und lesen Sie den Messwert ab.

Einige Hinweise zur Widerstandsmessung:

- Der Messwert eines Widerstands innerhalb eines Stromkreises ist oft verschieden von dem angegebenen Wert des Widerstands. Das liegt daran, dass das Gerät den Widerstand aller möglichen Leiter und Bahnen misst.
- Um die genauesten Messergebnisse bei niedrigem Widerstand zu erzielen überbrücken Sie die Testspitzen vor der Messung und merken Sie sich den angezeigten eigenen Widerstand der Testspitzen. Diesen Wert können Sie bei der anschließenden Messung subtrahieren.
- Die Widerstandsmessung kann genug Spannung erzeugen, um Silikondioden oder Transistoren zu Leitern werden zu lassen. Um dies zu vermeiden, vermeiden Sie den Gebrauch des $40 \text{M}\Omega$ -Messbereichs für Widerstandsmessungen innerhalb eines Stromkreises.
- Im 40MΩ-Messbereich benötigt das Gerät einige Sekunden, bis der Messwert stabil ist. Dies ist völlig normal bei einer solch hohen Messung.
- Wenn der Eingang des Geräts nicht verbunden ist, der Stromkreis also offen ist, erscheint auf der Anzeige das "OL" Symbol.

3.2.3 Diodetest

Um einen Stromschlag oder Beschädigung am Gerät zu vermeiden, trennen Sie das Gerät von jeglichen Stromkreisen und lassen Sie alle Spannungsspeicher entladen, bevor Sie einen Diodentest durchführen.

Verwenden Sie den Diodentest um Dioden, Transistoren und andere Halbleiter zu prüfen. Während des Diodentests wird eine leichte Spannung durch die Halbleiter geschickt. Dabei wird der Spannungsabfall nach Durchlaufen des Halbleiters gemessen. Eine gute Silikonkontaktstelle führt zu einem Abfall von etwa 0.5V bis 0.8V.

Diodentest außerhalb eines Stromkreises:

- Verbinden Sie die rote und schwarze Testspitze mit dem COM- bzw. dem V.Ω-Anschluss.
- Bei vorwärtsgerichteten Messungen von Halbleiterkomponenten, platzieren Sie die rote Testspitze auf die Anode der Komponente und die schwarze Testspitze an die Kathode des Halbleiters.
- 5. Das Gerät zeigt nun die ungefähre vorwärtsgerichtete Spannung der Diode an.

Innerhalb eines Stromkreises sollte eine gut funktionierende Diode noch immer eine vorwärtsgerichtete Spannung von 0.5V bis 0.8V anzeigen; dennoch, die rückwärtige Spannung kann aufgrund anderer Widerstände im Stromkreis variieren.

3.2.4 Kontinuitätsprüfung

Um einen Stromschlag oder Beschädigung am Gerät zu vermeiden, trennen Sie das Gerät von jeglichen Stromkreisen und lassen Sie alle Spannungsspeicher entladen, bevor Sie eine Kontinuitätsprüfung durchführen.

Kontinuität ist der komplette Pfad eines Spannungsflusses. Das Gerät piept, wenn ein Stromkreis geschlossen ist.

Kontinuitätsprüfung:

- 1. Drehen Sie den Drehregler auf → •••).
- Drücken Sie die ๗ / → -Taste um die Kontinuitätsprüfung zu beginnen.
- 3. Verbinden Sie die schwarze und rote Testspitze mit dem COM-Anschluss bzw. dem Ω -Anschluss.
- 4. Verbinden Sie die Testspitzen mit dem Widerstand des Stromkreises, den Sie messen prüfen möchten.
- 5. Wenn die Testspitze zum Stromkreis hin unter 50Ω misst, ertönt ein anhaltender Piepton.

HINWEIS:

 Mit einer Kontinuitätsprüfung können Sie testen, ob ein Stromkreis offen oder geschlossen ist.

3.2.5 Kapazitätsmessung

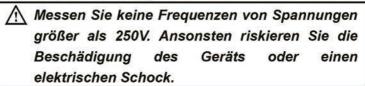
A

Um einen Stromschlag oder Beschädigung am Gerät zu vermeiden, trennen Sie das Gerät von jeglichen Stromkreisen und lassen Sie alle Hochspannungsspeicher entladen, bevor Sie eine Kapazitätsmessung durchführen. Verwenden Sie die DC Spannungsfunktion um sicherzugehen, dass alle Spannungsspeicher völlig entladen sind.

Kapazität bezeichnet die Fähigkeit einer Komponente eine elektrische Spannung zu speichern.

Die Messeinheit von Kapazität nennt sich Farad (F). Die meisten Speicher bewegen sich im Bereich von Nanofarad bis Microfarad. Dieses Gerät misst Kapazitäten durch das aufladen eines Speichers mit einer bekannten Spannung über eine festgelegte Dauer. Anschließend wird die aufgelaufene und geladne Spannung im Speicher gemessen. Die Messung und Kalkulation eines Speichers dauert etwa 1 Sekunde pro Messbereich.

Der Messbereich des Geräts reicht hierbei von 4.000nF über 40.00nF, 400.0nF, $4.000\mu F$, $40.00\mu F$ bis $200.0\mu F$.


Kapazitätsmessung:

- 1. Drehen Sie den Drehregler auf Cap.
- Verbinden Sie die schwarze und rote Testspitze mit dem COM-Anschluss bzw. dem Cx-Anschluss.
- Verbinden Sie die Testspitzen mit dem zu messenden Speicher und lesen Sie en Messwert vom Display ab.

Einige Hinweise zur Kapazitätsmessung:

- Das Gerät benötigt wenige Sekunden um seinen Messwert zu stabilisieren ($200\mu F = 30$ Sekunden). Dies ist normal für solche Messvorgänge.
- Um den Messvorgang zu optimieren und die Genauigkeit auf bis zu einer Abweichung von weniger als 4nF steigern, subtrahieren Sie die verbleibende Speicherkapazität der Testspitzen und des Geräts.

3.2.6 Frequenzmessung

- 1. Drehen Sie den Drehregler auf Hz.
- Verbinden Sie die schwarze und die rote Testspitze mit dem COM-Anschluss bzw. dem HZ-Anschluss.
- Verbinden Sie die Testspitzen mit der zu messenden Quelle und lesen Sie den angezeigten Messwert ab.

HINWEIS:

 Unter Messbedingungen mit starkem Lärmpegel sollte das mitgelieferte Testkabel zur Messung kleinerer Signale verwendet werden.

3.2.7 Transistormessung

Um einen elektrischen Schock oder Beschädigung des Geräts zu vermeiden, sollten Sie sichergehen, dass die Testspitzen von zuvor gemessenen Stromkreisen getrennt worden sind, bevor sie versuchen Transistoren zur Messung einzufügen.

- 1. Drehen Sie den Drehregler auf hFE.
- Bestimmen Sie, ob der zu testende Transistor vom Typ NPN oder PNP ist und lokalisieren Sie die Emitter, Basis und Sammlerleitungen.
- Führen Sie die Spitzen des Transistors in die dafür vorgesehenen hFE-Buchsen des Multimeters ein.
- Das Gerät wird nun den ungefähren Wert in hFE unter Testbedingungen und einer Basisspannung von 10μA und VDC 2.8V.

3.2.8 Strommessung (mit Klemme, optional)

- Drehen Sie den Drehregler auf
- Drücken Sie die ---/- -Taste um zwischen dem DCA und dem ACA Modus zu wechseln.
- 3. Verbinden Sie die Spitzen der Testklemme mit dem COM-Anschluss bzw. dem Anschluss des Geräts.
- 4. Lesen Sie den Messwert ab. Die Polarität des

- VΩ-Anschlusses wird während einer DCA-Messung angezeigt.
- 5. Eine Überspannung wird durch das Symbol "OL " im Display angezeigt.

3.2.9 Strommessung

/\ Um elektrischen Schock oder einen Beschädigung des Geräts im Falle eines Durchbrennens der Sicherung zu vermeiden, messen Sie keinen Strom in Stromkreisen. deren Stromkreispotential im unterbrochenen Zustand höher als 205V beträgt.

Außerdem sollten Sie die Sicherung des Geräts prüfen, bevor Sie eine Messung durchführen. Verwenden Sie die mitgelieferten Originaltestspitzen und halten Sie die empfohlenen Messwertbereiche ein. Schalten Sie die Testspitzen niemals parallel zu einem Stromkreis oder stromführenden einer Komponente solange die Spitzen an die Stromanschlüsse gekoppelt sind.

Die Bandbreite des Multimeters reicht von 400.0uA über 4000μA, 40.00mA, 400.0mA, und bis zu 10.00A.

Strommessung:

- 1. Schalten Sie den Stromkreis aus. Entladen Sie alle Speicherkapazitäten mit hoher Spannung.
- 2. Drehen Sie den Drehregler auf den μA, mA oder A Bereich
- 3. Drücken Sie die ---/~ -Taste um zwischen dem DCA-

- oder dem ACA-Modus zu wählen.
- 4. Verbinden Sie die schwarze Testspitze mit dem COM-Anschluss und die rote Testspitze mit dem mA-Anschluss des Geräts (Maximum 400mA). Für einen Maximalwert von 10A verbinden Sie die rote Testspitze mit dem A-Anschluss.
- 5. Unterbrechen Sie den zu testenden Stromkreis. Tippen Sie mit der schwarzen Testspitze den Stromkreis mit der eher negativen Seite der unterbrochenen Stelle und die rote Testspitze mit der positiven Seite der unterbrochenen Stelle. (Anders herum erhalten Sie einen negativen Messwert. Das Gerät wird aber dadurch nicht beschädigt.)
- 6. Stellen Sie die Stromzufuhr zum Stromkreis wieder her und lesen Sie den Messwert ab. Notieren Sie auf jeden Fall auch die Maßeinheit des gemessenen Wertes (rechte Seite des Displays: μA, mA oder A). Sollte nur das "OL"-Symbol angezeigt werden, ist der Messwert zu hoch und der nächst höhere Messbereich ist zu wählen.
- Stellen Sie den Stromkreis wieder ab. Entladen Sie alle Speicherkapazitäten. Entfernen Sie das Messgerät und verwenden den gemessenen Stromkreis wieder wie vorgesehen.

4 TECHNISCHE SPEZIFIKATIONEN 4.1 ALLGEMEINE SPEZIFIKATIONEN

Umweltwerte:

600V CAT. II

Verschmutzungsgrad: 2

Einsatzhöhe < 2000m

Betriebstemperatur:

0~40°C, 32~122°F (<80% RH, nicht kondensierend)

Lagertemperatur:

-10~60 °C, 14~140°F (<70% RH, Batterie entfernt)

Temperaturkoeffizient:

0.1×(spezifizierte Genauigkeit) / (<18 oder >28)

- MAX. Spannung zw. Den Testspitzen und Erdung: 600V AC rms oder 600V DC.
- · Sicherungsschutz:

μA und mA: F 500mA/600V 5×20;

10A: F 10A/600V 5x20

- · Abtastrate: 3-mal/sek. Für digitale Daten.
- · Display:

3¾-Ziffern LCD-Display. Automatische Anzeige der Funktion und Symbole.

- Messbereichauswahl: Automatisch und manuell.
- Überladungsanzeige: "OL"-Symbol im Display.
- Anzeige des Batteriestatus:

- Polaritätsanzeige: "-" -Symbol erscheint im Display.
- Stromzufuhr: 9V
- Batterietyp: NEDA 1604, 6F22, oder 006P.

• Maße: 91(L)×189(W)×31.5(H) mm.

• Gewicht: ca. 310g. (inkl. Batterie).

4.2 Messspezifikationen

Die Genauigkeit des Geräts ist für ein Jahr nach Eichung, einer Betriebstemperatur von 18°C bis 28°C und einer durchschnittlichen Luftfeuchtigkeit von 0% bis 75% spezifiziert.

Die Messspezifikationen werden in der Form \pm (% des Messwerts + Anzahl der weniger signifikanten Ziffern) dargestellt.

4.2.1 Gleichspannung

Bereich	Auflösung	Genauigkeit
400mV	0.1mV	
4V	1mV	± (0.7% des Messwerts
40V	10mV	+2 Ziffern)
400V	100mV	
600V	1V	± (0.8% des Messwerts +2 Ziffern)

Eingangswiderstand: $10M\Omega$

Max. Eingangsspannung: 600VDC oder 600V ac rms.

4.2.2 Wechselspannung

Bereich	Auflösung	Genauigkeit
400mV	0.1mV	±(1.5% des Messwerts + 3 Ziffern)
4V	1mV	± (0.8% des Messwerts - Ziffern)
40V	10mV	
400V	100mV	
600V	1V	±(1.0% des Messwerts +3 Ziffern)

Eingangswiderstand: $10M\Omega$

Max. Eingangsspannung: 600VDC oder 600V ac rms.

Frequenzbereich: 40Hz-200Hz bei 4V Messbereich,

40Hz-1kHz für andere Messbereiche.

Ansprechverhalten: Durchschnitt, geeicht in rms einer

Sinuskurve.

4.2.3 Widerstand

Bereich	Auflösung	Genauigkeit
400.0Ω	0.1Ω	
4.000kΩ	1Ω	. (4.00/0/ -1 M
40.00kΩ	10Ω	± (1.2%% des Messwer +2 Ziffern)
400.0kΩ	100Ω	
4.000ΜΩ	1kΩ	
40.00ΜΩ	10kΩ	± (2.0% des Messwerts +5 Ziffern)

Überladungsschutz: 250V dc oder 150VAC rms. Spannung bei unterbr. Stromkreis: ca. 250mV.

4.2.4 Dioden

Bereich	Auflösung	Genauigkeit
→	1mV	Display zeigt den ungefähren Strom der Diode an

Vorwärtiger Gleichstrom: ca. 1mA Rückwärtiger Gleichstrom: ca. 1.5V

Überladungsschutz: 250VDC oder 150VAC rms.

4.2.5 Kontinuitätsprüfung

Bereich	Kontinuitätssignal
01))	≤50Ω

Spannung bei unterbr. Stromkreis: ca.0.5V.

Überladungsschutz: 250VDC oder 250VAC rms.

4.2.6 Transistoren

Bereich	Beschreibung	Testbedingungen
hFE	Display zeigt ungefähren hFE-Wert (0-1000) des getesteten Transistors an (alle Typen).	ca. 10µA;

4.2.7 Kapazität

Bereich	Auflösung	Genauigkeit		
4nF	1pF	±(5.0% des Messwer +5 Ziffern)		
40nF	10pF	100		
400nF	100pF	1/2 00/ des Massaurants		
4μF	1nF	±(3.0% des Messwel +3 Ziffern)		
40μF	10nF			
200μF	100nF			

Überladungsschutz: 250VDC oder 250VAC rms.

4.2.8 Frequenz

Bereich	Auflösung	Genauigkeit	
9.999Hz	0.001 Hz		
99.99Hz	0.01 Hz		
999.9Hz	0.1 Hz	±(2.0% des Messwerts	
9.999kHz	1Hz	+5 Ziffern)	
99.99kHz	10Hz		
199.9kHz	100Hz]	
>200kHz	100Hz	Nicht spezifiziert >200kHz	

Überladungsschutz: 250V dc oder 250V ac rms.

Eingansspannung: 0.6V-3V ac rms (Eingangsspannung kann durch das Anheben der gemessenen

Frequenz geregelt werden.)

Frequenzansprache: 10Hz-200kHz, Sinuskurve.

0.5Hz-200kHz, Rechteckwelle.

4.2.9 Strom (mit Klemme, option	ıa	ıl
---------------------------------	----	----

Bereich	Auflösung	Genauigkeit
DC40A	0.1A/1mV	±(0.8% des Messwerts +3 Ziffern)
DC400A	1A/1mV	±(0.8% des Messwerts +3 Ziffern)
AC40A	0.1A/1mV	±(1.0% des Messwerts +3 Ziffern)
AC400A	1A/1mV	±(1.0% des Messwerts +3 Ziffern)

Eingangswiderstand: $1M\Omega$

Max. Eingangsspannung: 250VDC oder 250VAC rms.

4.2.10 Gleichstrom

Bereich	Auflösung	Genauigkeit		
400μΑ	0.1μΑ			
4000μΑ	1μΑ	±(1.2% des Messwerts		
40mA	0.01mA	+3 Ziffern)		
400mA	0.1mA			
10A	10mA	±(2.0% des Messwerts +5 Ziffern)		

Überladungsschutz: F 10A/600V Sicherung für A-Bereich.

F 500mA/600V Sicherung für μ A-Bereich und mA-Bereiche.

Max. Eingangsstrom: 400mA dc oder 400mA ac rms bei μ A-und mA-Bereichen, 10A dc oder 10A ac rms für A-Bereiche.

Bei Messungen >5A, 4 Minuten Maximum ON.

Zum Messen 10 Minuten OFF.

421	11	W	ecl	hsel	stron	n
7.4.		**		136	31101	

Bereich	Auflösung	Genauigkeit		
400μΑ	0.1μΑ			
4000μΑ	1μΑ	±(1.5% des Messwerts		
40mA	0.01mA	+5 Ziffern)		
400mA	0.1mA]		
10A	10mA	±(3.0% des Messwerts +7 Ziffern)		

Überladungsschutz: F 10A/600V Sicherung für A-Bereich.
F 500mA/600V Sicherung für μA- und mA-Bereiche.

Max. Eingangsstrom: 400mA dc oder 400mA ac rms bei μAund mA-Bereichen, 10A dc oder 10A ac rms bei A-Bereichen.

Frequenzbereich: 40Hz-1kHz

Ansprechverhalten: Durchschnitt, geeicht in rms einer Sinuskurve.

5. WARTUNG

Dieser Abschnitt hilft Ihnen bei der Wartung des Multimeters, inklusive des Wechsels von Sicherung und Batterie.

Versuchen Sie niemals das Gerät selbst zu reparieren, wenn Sie nicht die dafür notwendigen Kalibrierungswerkzeuge, Testanwendungen und Serviceinformationen haben und nicht speziell darin geübt sind.

5.1 Allgemeine Wartung

Um einen elektrischen Schock oder Beschädigung des Geräts zu vermeiden, gehen Sie sicher, dass keine Feuchtigkeit in das Gerät eindringen kann. Entfernen Sie die Testspitzen und Eingabesignale bevor Sie das Gehäuse öffnen.

Wischen Sie das Gehäuse regelmäßig mit einem feuchten Tuch und einem milden Reiniger ab. Verwenden Sie keine Säuren oder scharfe Reiniger.

Feuchtigkeit oder Dreck in den Eingängen können zu falschen Messergebnissen führen.

Reinigen der Anschlüsse:

- Schalten Sie das Gerät ab und entfernen Sie die Testspitzen.
- Schütteln Sie eventuelle Verschmutzungen (Staub etc.) aus den Anschlüssen heraus.
- Tränken Sie einen sauberen und unbenutzten Schwamm (Tuch o.ä.) mit einem Reinigungs- und Pflegemittel (wie z.B. WD-40).
- Reinigen Sie mit dem Schwamm die Anschlüsse. Die Pflegesubstanz schützt die Anschlüsse vor Korrosion durch Feuchtigkeit.

5.2 Batterie- und Sicherungswechsel

Sicherungen sollten in der Regel nicht ersetzt werden müssen.

Falls doch, ist dies meist auf ein Fehlverhalten des Anwenders zurückzuführen. Öffnen Sie das Gehäuse wie bereits zuvor beschrieben und entnehmen Sie den PCB-Aufbau aus dem Gehäuse. Ersetzen Sie die durchgebrannte Sicherung durch eine neue. Beachten Sie dabei die Spezifikationen für die Sicherung.

⚠ WARNUNG

Bevor Sie das Gehäuse öffnen, stellen Sie sicher, dass die Testspitzen von jeglichen Stromquellen getrennt sind. So beugen Sie einem elektrischen Schlag vor.

Für den Schutz gegen Feuer, verwenden Sie nur geeignete Sicherungen:

F1: F 500mA/600V F2: F 10A/600V

6. BENUTZUNG DES HOLSTERS

Der Holster ist dazu gedacht das Gerät zu schützen und die Verwendung komfortabler zu gestalten. Der Holster wird mit zwei Halterungen zum Aufbau geliefert:

- a. Stützen Sie das Gerät mit einem üblichen Winkel.
- b. Stützen Sie das Gerät mit einem kleinen Winkel und einem kleinen Ständer.
- c. Hängen Sie den Multimeter mit der kleineren Halterung an die Wand. Nehmen Sie die kleine Halterung von der Rückseite der großen Halterung und fügen Sie diese in die Löcher am oberen Teil des Holsters.
- d. Hängen Sie die Testspitzen auf.

ACHTUNG:

"Wenn Sie dieses Gerät in einer Umgebung mit intensiver elektromagnetischen oder hochfrequenten Strahlungen und/oder Feldern (ca. 3V/m) verwenden, könnten die gemessenen Werte beeinträchtigt und unter Umständen stark verfälscht werden

INFORMATIONEN FÜR PRIVATE HAUSHALTE

Das Elektro- und Elektronikgerätegesetz (ElektroG) enthält eine Vielzahl von Anforderungen an den Umgang mit Elektro- und Elektronikgeräten. Die wichtigsten sind hier zusammengestellt.

1. GETRENNTE ERFASSUNG VON ALTGERÄTEN:

Elektro- und Elektronikgeräte, die zu Abfall geworden sind, werden als Altgeräte bezeichnet. Besitzer von Altgeräten haben diese einer vom unsortierten Siedlungsabfall getrennten Erfassung zuzuführen. Altgeräte gehören insbesondere nicht in den Hausmüll, sondern in spezielle Sammel- und Rückgabesysteme.

2. BATTERIEN UND AKKUS SOWIE LAMPEN:

Besitzer von Altgeräten haben Altbatterien und Altakkumulatoren, die nicht vom Altgerät umschlossen sind, sowie Lampen, die zerstörungsfrei aus dem Altgerät entnommen werden können, im Regelfall vor der Abgabe an einer Erfassungsstelle vom Altgerät zu trennen. Dies gilt nicht, soweit Altgeräte einer Vorbereitung zur Wiederverwendung unter Beteiligung eines öffentlichrechtlichen Entsorgungsträgers zugeführt werden.

3. MÖGLICHKEITEN DER RÜCKGABE VON ALTGERÄTEN:

Besitzer von Altgeräten aus privaten Haushalten können diese bei den Sammelstellen der öffentlich-rechtlichen Entsorgungsträger oder bei den von Herstellern oder Vertreibern im Sinne des ElektroG eingerichteten Rücknahmestellen unentgeltlich abgeben.

4. BEDEUTUNG DES SYMBOLS "DURCHGESTRICHENE MÜLLTONNE":

Das auf Elektro- und Elektronikgeräten abgebildete Symbol einer durchgestrichenen Mülltonne weist darauf hin, dass das jeweilige Gerät am Ende seiner Lebensdauer getrennt vom unsortierten Siedlungsabfall zu erfassen ist.

FOLGENDE BATTERIEN BZW. AKKUMULATOREN SIND IN DIESEM ELEKTROGERÄT ENTHALTEN:

Batterietyp: 9V Block

Chemisches System: Alkali-Mangan

ANGABEN ZUR SICHEREN ENTNAHME DER BATTERIEN ODER DER AKKUMULATOREN:

- · Warnhinweis: Vergewissern Sie sich, ob die Batterie ganz entleert ist.
- Entnehmen Sie vorsichtig die Batterie oder den Akkumulator.
- Die Batterie bzw. der Akkumulator und das Gerät können jetzt getrennt entsorgt werden.

SW STAHL PROFESSIONAL TOOLS

INSTRUCTION MANUAL

Table of Contents

TITLE	PAGE
1. GENERAL INSTRUCTIONS	1
1.1 Precaution safety measures	1
1.1.1 Preliminary	1
1.1.2 During use	2
1.1.3 Symbols	4
1.1.4 Instructions	5
2. DESCRIPTION	6
2.1 Instrument Familiarization	6
2.2 LCD Display	7
2.3 Key pad	9
2.4 Rotary switch	10
2.5 Terminals	11
2.6 Accessories	11
3. FUNCTION DESCRIPTION	12
3.1 General Functions	12
3.1.1 DATA HOLD mode	12
3.1.2 Manual ranging and Autorange mode	12
3.1.3 Battery saver	13
3.2 Measurement Functions	13
3.2.1 AC and DC Voltage measurement	13
3.2.2 Resistance measurement	14
3.2.3 Diode Test	16
3.2.4 Continuity Check	17
3.2.5 Capacitance measurement	17
3.2.6 Frequency measurement	18
3.2.7 Transistor measurement	19
3.2.8 Current measurement (with clamp,optiona	,
3 2 9 Current measurement	20

Table of Contents

TITLE	PAGE
4. TECHNICAL SPECIFICATIONS	21
4.1 General specifications	21
4.2 Measurement specifications	22
4.2.1 DC Voltage	22
4.2.2 AC Voltage	22
4.2.3 Resistance	23
4.2.4 Diode Test	23
4.2.5 Continuity Check	23
4.2.6 Transistor	23
4.2.7 Capacitance	24
4.2.8 Frequency	24
4.2.9 Current (with clamp, optional)	24
4.2.10 DC Current	25
4.2.11 AC Current	25
5. MAINTENANCE	26
5.1 General maintenance	26
5.2 Battery and fuse replacement	26
6. HOW TO USE THE HOLSTER	27

1. GENERAL INSTRUCTIONS

This instrument complies with IEC 1010 CAT. II overvoltage standards. See Specifications.

To get the best service from this instrument, read carefully this user's manual and respect the detailed safety precautions.

International symbols used on the Meter and in this manual are explained in chapter 1.1.3

1.1 Precautions safety measures

1.1.1 Preliminary

* Measurement category III is for measurements performed in the building installation.

NOTE: Examples are measurements on distribution boards, circuit-breakers, wiring, including cables, bus-bars, junction boxes, switches, socket-outlets in the fixed installation, and equipment for industrial use and some other equipment, for example, stationary motors with permanent connection to the fixed installation.

- * Measurement category II is for measurements performed on circuits directly connected to the low voltage installation.
 - NOTE: Examples are measurements on household appliances, portable tools and similar equipment.
- * Measurement category I is for measurements performed on circuits not directly connected to MAINS.
 - NOTE: Examples are measurements on circuits not derived from MAINS, and specially protected (internal) MAINS derived circuits. In the latter case, transient stresses are variable; for that reason, requires that the transient withstand capability of the equipment is made known to the user.
- * When using this Multimeter, the user must observe all normal safety rules concerning:

- protection against the dangers of electric current.
- protection of the Multimeter against misuse.
- * For your own safety, only use the test probes supplied with the instrument. Before use, check that they are in good condition.

1.1.2 During use

- * If the meter is used near noise generating equipment, be aware that display may become unstable or indicate large errors.
- * Do not use the meter or test leads if they look damaged.
- * Use the meter only as specified in this manual; otherwise, the protection provided by the meter may be impaired.
- * Use extreme caution when working around bare conductors or bus bars.
- * Do not operate the meter around explosive gas, vapor, or dust.
- * Verify a Meter's operation by measuring a known voltage.

 Do not use the Meter if it operates abnormally. Protection
 may be impaired. When in doubt, have the Meter serviced.
- * Uses the proper terminals, function, and range for your measurements.
- * When the range of the value to be measured is unknown, check that the range initially set on the multimeter is the highest possible or, wherever possible, choose the auto ranging mode.
- * To avoid damages to the instrument, do not exceed the maximum limits of the input values shown in the technical specification tables.
- * When the multimeter is linked to measurement circuits, do not touch unused terminals.

- * Caution when working with voltages above 60Vdc or 30Vac rms. Such voltages pose a shock hazard.
- * When using the probes, keep your fingers behind the finger guards.
- * When making connections, connect the common test lead before connecting the live test lead; when disconnecting, disconnect the live test lead before disconnecting the common test lead.
- * Before changing functions, disconnect the test leads from the circuit under test.
- * For all dc functions, including manual or auto-ranging, to avoid the risk of shock due to possible improper reading, verify the presence of any ac voltages by first using the ac function. Then select a dc voltage range equal to or greater than the ac range.
- * Before attempting to insert transistors for testing, always be sure that test leads have been disconnected from any measurement circuits.
- * Components should not be connected to the hFE socket when making voltage measurements with test leads.
- * Disconnect circuits power and discharge all high-voltage capacitors before testing resistance, continuity, diodes, or capacitance.
- * Never perform resistance or continuity measurements on live circuits.
- * Before measuring current, check the meter's fuse and turn off power to the circuit before connecting the meter to the circuit.
- * In TV repair work, or when carrying out measurements on power switching circuits, remember that high amplitude voltage pulses at the test points can damage the multimeter. Use of a TV filter will attenuate any such pulses.

- * Use the 9V NEDA battery, properly installed in the Meter's battery case, to power the Meter.
- * Replace the battery as soon as the battery indicator () appears. With a low battery, the Meter might produce false readings that can lead to electric shock and personal injury.
- * Do not measure voltages above 600V in Category III, or 1000V in Category II installations.
- * Do not operate the Meter with the case (or part of the case) removed.

1.1.3 Symbols:

Symbols used in this manual and on the instrument:

Caution: refer to the instruction manual. Incorrect use may result in damage to the device or its components.

Dangerous voltage may be present.

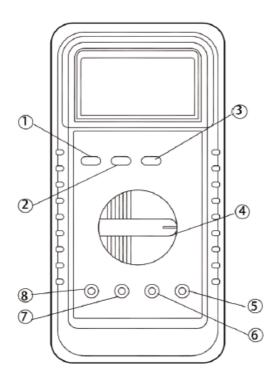
➤ AC (Alternating Current)

DC (Direct Current)

≟ Earth ground

Double insulated

— Fuse


CE Conforms to European Union directives

1.1.4 Instructions

- * Remove test leads from the Meter before opening the Meter case or battery cover.
- * When servicing the Meter, use only specified replacement parts.
- * Before opening up the instrument, always disconnect from all sources of electric current and make sure you are not charged with static electricity, which may destroy internal components.
- * Any adjustment, maintenance or repair work carried out on the meter while it is live should be carried out only by appropriately qualified personnel, after having taken into account the instructions in this present manual.
- * A "qualified person" is someone who is familiar with the installation, construction and operation of the equipment and the hazards involved. He is trained and authorized to energize and de-energize circuits and equipment in accordance with established practices.
- * When the instrument is opened up, remember that some internal capacitors can retain a dangerous potential even after the instrument is switched off.
- * If any faults or abnormalities are observed, take the instrument out of service and ensure that it cannot be used until it has been checked out.
- * If the meter is not going to be used for a long time, take out the battery and do not store the meter in high temperature or high humidity environment.

2. DESCRIPTION

2.1 Instrument Familiarization

- ① Range Control Button
- ② Data Hold Button
- ③ AC/DC Current or ·III/→ Selecting Button
- 4 Function Switch/Power Switch
- ⁵ V/Ω/F/Cx Input Jack
- 6 COM Input Jack
- 8 10A Input Jack

2.2 LCD Display

See Table 1 indicated for information about the LCD display.

Table 1. Display Symbols

Symbol	Meaning		
===	The battery is low. **Warning: To avoid false readings, which could lead to possible electric shock or personal injury, replace the battery as soon as the battery indicator appears.		
-	Indicates negative readings.		
A C	Indicator for ac voltage or current. AC voltage and current are displayed as the average of the absolute value of the input, calibrated to indicate the equivalent rms value of a sine wave.		
DC	Indicator for dc voltage or current.		
AUTO	The Meter is in the Autorange mode in which the meter automatically selects the range with the best resolution.		

Table 1. Display Symbols (continued)

Symbol	Meaning		
*	Indicator for the Diode Test mode		
hFE	Indicator for the transistor test mode		
01))	Indicator for the Continuity Check mode.		
H	Indicator for the Data Hold mode		
V, mV	V: Volts. The unit of voltage. mV: Millivolt. 1x10 ⁻³ or 0.001 volts.		
A, mA, ⊠A	A: Amperes (amps). The unit of current. mA: Milliamp. 1x10 ⁻³ or 0.001 amperes. M: Microamp. 1x10 ⁻⁶ or 0.000001 amperes		
⋈ к⋈ м⋈	 ☑ Ohm. The unit of resistance. k☒ Kilohm. 1x10³ or 1000 ohms. M☒ Megohm. 1x10⁶ or 1,000,000 ohms. 		
Hz, kHz, MHz	Hz: Hertz. The unit of frequency in cycles/second. KHz: Kilohertz. 1x10 ³ or 1000 hertz. MHz: Megahertz. 1x10 ⁶ or 1,000,000 hertz.		
⊠f, nF	F: Farad. The unit of capacitance. H: Microfarad.1x10 ⁻⁶ or 0.000001 farads. nF: Nanofarad. 1x10 ⁻⁹ or 0.000000001 farads.		
OL	The input is too large for the selected range.		

2.3 Keypad

See Table 2 indicated for information about the keypad operations.

Table 2. Keypad

Key	Function	Operation performed
((to/)	→ ••••)	Switches between Diode Test and Continuity check.
	S⇒ A mA 🖟	Switches between dc and ac current.
	Power-up Option	Disables automatic power-off feature.
DATA-H	Any switch position	Press HOLD to enter and exit the Data Hold mode.
RANGE	V~, V , ⊠ ⊅ , mA and ⊠A.	 Press RANGE to enter the manual ranging mode. Press RANGE to step through the ranges available for the selected function. Press and hold RANGE for 2 seconds to return to autoranging.

2.4 Rotary switch

See Table 3 indicated for information about the rotary switch positions.

Table 3. Rotary Switch Positions

Switch Position	Function	
V~	AC Voltage measurement	
V	DC Voltage measurement	
	Resistance measurement	
→ •0)	Diode Test / Continuity Check	
Сар	Capacitance measurement	
Hz	Frequency measurement	
hFE	Transistor measurement	
Þ	Measurement with clamp (optional), widening the field of applications of the multimeter	
⊠A	DC or AC current measurements from 0.1 to 4000	
mA	DC or AC current measurements from 0.01mA to 400mA.	
Α	DC or AC Current measurement from 0.01A to 10.00A.	

2.5 Terminals

See Table 4 indicated for information about the terminals.

Table 4. Terminals

Terminal	Description
СОМ	Return terminal for all measurements. (Receiving the black test lead or the "com" plug of the optional clamp)
VΩFCx	Input for voltage, resistance, frequency, Capacitance, diode and continuity measurements. (Receiving the red test lead)
mA⊅	Input for 0.1µA to 400mA current measurements. (Receiving the red test lead or the "+" plug of the optional clamp)
Α	Input for 400mA to 10A current measurements. (Receiving the red test lead)

2.6 Accessories

Delivered with the multimeter:

- User's manual
- Carry case
- Test leads
- Holster

Optional:

• Clamp

3. FUNCTION DESCRIPTION

3.1 General Functions

3.1.1 DATA HOLD mode

Data Hold mode makes the meter stop updating the display. Enabling Data Hold function in autorange mode makes the meter switch to Manual ranging mode, but the full-scale range remains the same. Data Hold function can be cancelled by changing the measurement mode, pressing **RANGE** key, or push **HOLD** key again.

To enter and exit the Data Hold mode:

- 1. Press **HOLD** key (short press). Fixes the display on the current value, "**H**"" is displayed.
- 2. A second short press returns the meter to normal mode.

3.1.2 Manual ranging and Autorange mode

The Meter has both manual ranging and autorange options.

- * In the autorange mode, the Meter selects the best range for the input detected. This allows you to switch test points without having to reset the range.
- * In the manual ranging mode, you select the range. This allows you to override autorange and lock the meter in a specific range.
- * The Meter defaults to the autorange mode in measurement functions that have more than one range. When the Meter is in the autorange mode, AUTO is displayed.

To enter and exit the manual range mode:

 Press RANGE key. The Meter enters the manual ranging mode. AUTO turns off. Each presses of RANGE key increments the range. When the highest range is reached, the Meter wraps to the lowest range.

- NOTE: If you manually change the measurement range after entering the Data Hold modes, the Meter exits this mode.
- To exit the manual ranging mode, press and hold down RANGE key for two seconds. The Meter returns to the autorange mode and AUTO is displayed.

3.1.3 Battery Saver

The Meter enters the "sleep mode" and blanks the display if the Meter is on but not used for 30 minutes.

Press the **HOLD** key or rotate the rotary switch to wake the meter up.

To disable the Sleep mode, hold down the key while turning the meter on.

3.2 Measurement Functions

3.2.1 AC and DC Voltage measurement

To avoid electrical shock and/or damage to the instrument, do not attempt to take any voltage measurement that might exceed 1000Vdc or 750Vac rms.

To avoid electrical shock and/or damage to the instrument, do not apply more than 1000Vdc or 750Vac rms between the common terminal and the earth ground.

The polarity of ac (alternating current) voltage varies over time; the polarity of dc (direct current) voltage is constant.

The Meter's DC voltage ranges are 400.0mV, 4.000V, 40.00V, 400.0V and 600V; AC voltage ranges are 400.0mV, 4.000V, 400.0V, 400.0V and 600V.

(AC 400.0mV range only exists in manual ranging mode).

To measure ac or dc voltage:

- 1. Set rotary switch to the DCV or ACV range.
- Connect the black and red test leads to the COM and V terminals respectively.
- 3. Connect the test leads to the circuit being measured
- Read the displayed value. The polarity of red test lead connection will be indicated when making a DCV measurement.

NOTE:

- Unstable display may occur especially at 400mV range, even though you do not put test leads into input terminals, in this case, if an erroneous reading is suspected, short the V terminal and the COM terminal, and make sure the zero display.
- For better accuracy when measuring the dc offset of an ac voltage, measure the ac voltage first. Note the ac voltage range, then manually select a dc voltage range equal to or higher than the ac range. This improves the accuracy of the dc measurement by ensuring that the input protection circuits are not activated.

3.2.2 Resistance measurement

To avoid electrical shock and/or damage to the instrument, disconnect circuit power and discharge all high -voltage capacitors before measuring resistance.

The unit of resistance is the ohm (Ω) . The Meter measures resistance by sending a small current through the circuit. Because this current flows through all possible paths between the probes, an in -circuit resistance reading represents the total resistance of all paths between the probes.

The Meter's resistance ranges are 400.0 Ω , 4.000k Ω , 40.00k Ω , 40.00k Ω , 400.0k Ω , 4.000M Ω and 40.00M Ω .

To measure resistance:

- 1. Set the rotary switch to Ω range.
- 2. Connect the black and red test leads to the COM and Ω terminals respectively.
- 3. Connect the test leads to the circuit being measured and read the displayed value.

Some tips for measuring resistance:

- The measured value of a resistor in a circuit is often different from the resistor's rated value. This is because the Meter's test current flows through all possible paths between the probe tips.
- In order to ensure the best accuracy in measurement of low resistance, short the test leads before measurement and memory the test probe resistance in mind. This necessary to subtract for the resistance of the test leads.
- The resistance function can produce enough voltage to forward-bias silicon diode or transistor junctions, causing them to conduct. To avoid this, do not use the $40M\Omega$ range for in-circuit resistance measurements.
- On 40MΩ range, the meter may take a few seconds to stabilize reading. This is normal for high resistance measuring.
- When the input is not connected, i.e. at open circuit, the figure "OL" will be displayed for the overrange condition.

3.2.3 Diode Test

 $\underline{\mathbb{A}}$

To avoid electrical shock and/or damage to the instrument, disconnect circuit power and discharge all high-voltage capacitors before testing diodes.

Use the diode test to check diodes, transistors, and other semiconductor devices. The diode test sends a current through the semiconductor junction, then measures the voltage drop across the junction, A good silicon junction drops between 0.5V and 0.8V.

To test a diode out of a circuit:

- 1. Set the rotary switch to + manage.
- 2. Press the **■/→** key to activate Diode Test.
- 3. Connect the black and red test leads to the COM and $V\Omega$ terminals respectively.
- 4. For forward-bias readings on any semiconductor component, place the red test lead on the component's anode and place the black test lead on the component's cathode.
- 5. The meter will show the approx. forward voltage of the diode.

In a circuit, a good diode should still produce a forward bias reading of 0.5V to 0.8V; however, the reverse-bias reading can vary depending on the resistance of other pathways between the probe tips.

3.2.4 Continuity Check

To avoid electrical shock and/or damage to the instrument, disconnect circuit power and discharge all high-voltage capacitors before testing for Continuity.

Continuity is a complete path for current flow.

The beeper sounds if a circuit is complete. These brief contacts cause the Meter to emit a short beep.

To test for continuity:

- 1. Set the rotary switch to + manage.
- 2. Press the <a>
 ■/ → key to activate Continuity Check.
- 3. Connect the black and red test leads to the COM and Ω terminals respectively.
- 4. Connect the test leads to the resistance in the circuit being measured.
- 5. When the test lead to the circuit is below 50Ω , a continuous beeping will indicate it.

Note:

Continuity test is available to check open/short of the circuit.

3.2.5 Capacitance measurement

To avoid electrical shock and/or damage to the instrument, disconnect circuit power and discharge all high-voltage capacitors before measuring capacitance. Use the dc voltage function to confirm that the capacitor is discharged.

Capacitance is the ability of a component to store an electrical charge.

The unit of capacitance is the farad (F). Most capacitors are in the nanofarad to microfarad range. The Meter measures capacitance by charging the capacitor with a known current for a known period of time, measuring the resulting voltage, then calculating the capacitance. The measurement takes about 1 second per range.

The Meter's capacitance ranges are 4.000nF 40.00nF, 400.0nF, 4.000μF, 40.00μF and 200.0μF.

To measure capacitance:

- 1. Set the rotary switch to **Cap** range.
- 2. Connect the black and red test leads to the **COM** and **Cx** terminals respectively.
- 3. Connect the test leads to the capacitor being measured and read the displayed value.

Some tips for measuring capacitance:

- The meter may take a few seconds (200) range, 30 seconds) to stabilize reading. This is normal for high capacitance measuring.
- To improve the accuracy of measurements less than 4nF. subtract the residual capacitance of the Meter and leads.

3.2.6 Frequency measurement

∕!\ Do not measure Frequency on high voltage (>250V) to avoid electrical shock hazard and/or damage to the instrument.

- 1. Set the rotary switch to **Hz** range.
- 2. Connect the black and red test leads to the COM and Hz terminals respectively.
- 3. Connect the test leads across the source or load under measurement, and read the displayed value.

Note:

• In noisy environment, it is preferable to use shield cable for measuring small signal.

3.2.7 Transistor measurement

To avoid electrical shock and/or damage to the instrument, before attempting to insert transistors for testing, always be sure that test leads have be en disconnected from any measurement circuits.

- 1. Set the rotary switch to **hFE** range.
- 2. Determine whether the transistor to be tested is NPN or PNP type and locate the Emitter, Base and Collector leads.
- 3. Insert leads of the transistor into proper holes of the hFE socket.
- 4. The meter will show the approx. hFE value at test condition of base current 10µA and Vce 2.8V.

3.2.8 Current measurement (with clamp, optional)

To avoid electrical shock and/or damage to the instrument, do not apply more than 250Vdc or 250Vac rms between the terminal and the COM terminal.

- 1. Set the rotary switch to the **p** range.
- 2. Press —/~ key to select DCA or ACA measuring mode.
- 3. Connect the leads of the clamp to the **COM** and **COM**
- 4. Read the displayed value. The polarity of the V Ω terminal connection will be indicated when making a DCA measurement.
- 5. When only the figure "OL" displayed, it indicates overrange situation.

3.2.9 Current measurement

igwedge au To avoid damage to the Meter or injury if the fuse blows, never attempt an in -circuit current measurement where the open-circuit potential to earth is greater than 250V.

To avoid damage to the meter, check the meter's fuse before proceeding. Use the proper terminals, function, and range for your measurement. Never place the probes in parallel with a circuit or component when the leads are plugged into the current terminals.

The Meter's current ranges are 400.0 μA, 4000μA, 40.00mA, 400.0mA, and 10.00A.

To measure current:

- 1. Turn off power to the circuit. Discharge all high voltage capacitors.
- 2. Set the rotary switch to the µA, mA or A range.
- 3. Press the ==/~ key to select DCA or ACA measuring mode.
- 4. Connect the black test lead to the COM terminal and the red test leads to the mA terminal for a maximum of 400mA. For a maximum of 10A, move the redtest lead to the A terminal.
- 5. Break the circuit path to be tested. Touch the black probe to the more negative side of the break; touch the red probe to the more positive side of the break. (Reversing the leads will give a negative reading, but will not damage the Meter.)
- 6. Turn on power to the circuit; then read the display. Be sure to note the measurement units at the right side of the display (μA, mA or A). When only the figure "OL" displayed, it indicates overrange situation and the higher range has to be selected.

 Turn off power to the circuit and discharge all high voltage capacitors. Remove the Meter and restore the circuit to normal operation.

4 TECHNICAL SPECIFICATIONS

4.1 GENERAL SPECIFICATIONS

Environment conditions:

600V CAT. II

Pollution degree: 2

Altitude < 2000m

Operating temperature:

0~40°C, 32°F ~122°F (80% RH, non-condensing)

Storage temperature:

-10~60 °C, 14°F ~140°F (<70% RH, battery removed)

- Temperature Coefficient:
 - 0.1×(specified accuracy) / °C (<18°Cor >28°C)
- MAX. Voltage between terminals and earth ground:
 600V AC rms or 600V DC.
- Fuse Protection:

 μ A and mA: F 500mA/600V \varnothing 5×20;

10A: F 10A/600V Ø6.3×32.

- Sample Rate: 3 times/sec for digital data.
- Display:
- 3 3/4 digits LCD display. Automatic indication of functions and symbols.
- Range selection: automatic and manual.
- Over Range indication: LCD will display "OL".
- Low battery indication:
 - The " is displayed when the battery is under the proper operation range.
- Polarity indication: "-" displayed automatically.
- Power source: 9V ===

• Battery type: NEDA 1604, 6F22, or 006P.

• Dimensions: 91(L)×189(W)×31.5(H) mm.

• Weight: 310g. Approx. (battery included).

4.2 Measurement specifications

Accuracy is specified for one year after calibration, at operating temperatures of 18 t%C28 with relative humidity at 0% to 75%.

Accuracy specifications take the form of: ± (% of Reading + Number of Least Significant Digits)

4.2.1 DC Voltage

<u></u>		
Range	Resolution	Accuracy
400mV	0.1mV	
4V	1mV	. (0.70/ -f.nd.n0.dinita)
40V	10mV	± (0.7% of rdg +2 digits)
400V	100mV	
600V	1V	± (0.8% of rdg +2 digits)

Input impedance: $10M\Omega$

Max. input voltage: 600Vdc or 600V ac rms.

4.2.2 AC Voltage

Danas	Decelution	A 22118221
Range	Resolution	Accuracy
400mV	0.1mV	±(3.0% of rdg + 3 digits)
4V	1mV	
40V	10mV	± (0.8% of rdg +3 digits)
400V	100mV	
600V	1V	± (1.0% of rdg +3 digits)

Input impedance: $10M\Omega$

Max. input voltage: 600Vdc or 600V ac rms.

Frequency Range: 40Hz-200Hz for 4V range, 40Hz-1kHz for

other ranges.

Response: Average, calibrated in rms of sine wave

4.2.3 Resistance

Range	Resolution	Accuracy
400.0Ω	0.1Ω	
4.000kΩ	1Ω	. (4.00/0/ 5 1 .0
40.00kΩ	10Ω	± (1.2%% of rdg +2 digits)
400.0kΩ	100Ω	uigits)
4.000 Μ Ω	1kΩ	
40.00MΩ	10kΩ	± (2.0% of rdg +5 digits)

Overload protection: 250V dc or 150Vac rms.

Open Circuit Voltage: approx. 250mV.

4.2.4 Diode

Range	Resolution	Function
→	1mV	Display read approx. forward voltage of diode

Forward DC Current: approx. 1mA Reversed DC Voltage: approx. 1.5V

Overload protection: 250Vdc or 150Vac rms.

4.2.5 Audible continuity

Range	Continuity beeper
ed)	≤50Ω

Open circuit voltage: approx.0.5V.

Overload protection: 250Vdc or 250Vac rms.

4.2.6 Transistor

Range	Description	Test Condition
	Display read approx. HFE	Base Current
hFE	value (0-1000) of transistor	approx. 10µA,
	under test (all type).	Vce approx. 2.8V.

4.2.7 Capacitance

Range	Resolution	Accuracy
4nF	1pF	±(5.0% of rdg+5 digits)
40nF	10pF	
400nF	100pF	
4μF	1nF	±(3.0% of rdg+3 digits)
40μF	10nF	
200μF	100nF	

Overload protection: 250Vdc or 250Vac rms.

4.2.8 Frequency

Range	Resolution	Accuracy
9.999Hz	0.001 Hz	
99.99Hz	0.01 Hz	
999.9Hz	0.1 Hz	1/2 00/ of rda (E digita)
9.999kHz	1Hz	±(2.0% of rdg+5 digits)
99.99kHz	10Hz	
199.9kHz	100Hz	
>200kHz	100Hz	Unspecified @ >200kHz

Overload protection: 250V dc or 250V ac rms.

Input Voltage range: 0.6V-3V ac rms (Input voltage must be enlarged with increasing frequency under measurement)

Frequency Response: 10Hz-200kHz, sine wave. 0.5Hz - 200kHz, square wave.

4.2.9 Current (with clamp, optional)

Range	Resolution	Accuracy
DC40A	0.1A/1mV	±(0.8% of rdg+3 digits)
DC400A	1A/1mV	±(0.8% of rdg+3 digits)
AC40A	0.1A/1mV	±(1.0% of rdg+3 digits)
AC400A	1A/1mV	±(1.0% of rdg+3 digits)

Input impedance: $1M\Omega$

Max. input voltage: 250Vdc or 250Vac rms.

4.2.10 DC CURRENT

Range	Resolution	Accuracy
400μΑ	0.1μΑ	
4000μΑ	1μΑ	+/1 20/ of rda 2 digita)
40mA	0.01mA	±(1.2% of rdg+3 digits)
400mA	0.1mA	
10A	10mA	±(2.0% of rdg+5 digits)

Overload protection: F 10A/600V fuse for A range. F 500mA/600V fuse for µA and mA ranges.

Maximum input current: 400mA dc or 400mA ac rms fpA and mA ranges, 10A dc or10A ac rms for A ranges.

For measurements>5A, 4 minutes maximum ON to measure 10 minutes OFF.

4.2.11 AC CURRENT

Range	Resolution	Accuracy
400μΑ	0.1μΑ	
4000μΑ	1μΑ	±(1.5% of rdg+5 digits)
40mA	0.01mA	±(1.5% or rug+5 digits)
400mA	0.1mA	
10A	10mA	±(3.0% of rdg+7 digits)

Overload protection: F 10A/600V fuse for A range.

F 500mA/600Vfuse forμA and mA ranges.

Maximum input current: 400mA dc or 400mA ac rms fpA and mA ranges, 10A dc or 10A ac rms for A ranges.

Frequency Range: 40Hz-1kHz

Response: Average, calibrated in rms of sine wave

5. MAINTENANCE

This section provides basic maintenance information, including fuse and battery replacement instructions.

Do not attempt to repair or service your Meter unless you are qualified to do so and have the relevant calibration, performance test, and service information.

5.1 General Maintenance

To avoid electrical shock or damage to the meter, do not get water inside the case. Remove the test leads and any input signals before opening the case

Periodically wipe the case with a damp cloth and mild detergent. Do not use abrasives or solvents.

Dirt or moisture in the terminals can affect readings. To clean the terminals:

- Turn the meter off and remove all test leads.
- Shake out any dirt that may be in the terminals.
- Soak a new swab with a cleaning and oiling agent (such as WD-40).
- Work the swab around in each terminal. The oiling agent insulates the terminals from moisturerelated contamination.

5.2 Battery and fuse replacement

If the sign "FFF" appears on the LCD display, it indicates that the battery should be replaced. Remove screws on the back cover and open the case. Replace the exhausted battery with a new one. Fuse rarely need replacement and blow almost always as a result of the operator 's error .Open the case as mentioned above, and then take the PCB assembly out from the case .Replace the blown fuse with ratings specified.

MARNING

Before attempting to open the case, be sure that test leads have been disconnected from measurement circuits to avoid electric shock hazard.

For protection against fire, replace fuse only with specified ratings: F1: F 500mA/250V F2: F 10A/250V

6. HOW TO USE THE HOLSTER

The holster is used to protect the meter and to make the measurement more comfortable. it comes with two stands installed together. The following figure shows how to use the holster to:

- a. Support the meter with a standard angle.
- b. Support the meter with a small angle using the little stand
- c. Hang the meter on the wall using the little stand. Take the little stand off from the backside of the large stand and insert it into holes located upper on the holster.
- d. Hold test leads.

A CAUTION:

"Using this appliance in an environment with a strong radiated radio-frequency electromagnetic field9approximately 3V/m), may influence its measuring accuracy. The measuring result can be strongly deviating from the actual value"

INFORMATION FOR PRIVATE ENDUSER

The Electrical and Electronic Equipment Act (ElektroG) contains a large number of requirements for the handling of electrical and electronic equipment. The most important ones are summarised here.

1. SEPARATE COLLECTION OF OLD DEVICES:

Electrical and electronic equipment that has become waste is referred to as old devices. Owners of old devices must dispose of them separately from unsorted municipal waste. In particular, old devices do not belong in household waste, but in special collection and return systems.

2. BATTERIES AND ACCUMULATORS AND LAMPS:

As a rule, owners of old devices must separate batteries and accumulators that are not enclosed in the old device, as well as lamps that can be removed from the old device without causing damage, from the old device before handing them in a collection point. This does not apply if old device is prepared for reuse with the involvement of a public waste management authority.

3. OPTIONS FOR RETURNING OLD DEVICES:

Owners of old devices from private households can return them free of charge to the collection points of the public waste management authorities or to the take-back points set up by manufacturers or distributors as defined by the ElektroG.

4. MEANING OF THE SYMBOL "CROSSED-OUT DUSTBIN":

The symbol of a crossed-out dustbin shown on electrical and electronic equipment indicates that the respective device is to be collected separately from unsorted municipal waste at the end of its service life.

THE FOLLOWING BATTERIES OR ACCUMULATORS ARE CONTAINED IN THIS ELECTRICAL DEVICE:

Battery type: 9V battery

Chemical system: Alkali-manganese

INFORMATION ON HOW TO REMOVE THE BATTERIES OR ACCUMULATORS SAFELY:

- Warning: Make sure that the battery is completely empty.
- Carefully remove the battery or accumulator.
- The battery or accumulator and the device can now be disposed of separately

EU-KONFORMITÄRSERKLÄRUNG **EC DECLARATION OF CONFORMITY DÉCLARATION DE CONFORMITÉ UE**

Wir erklären in alleiniger Verantwortung, dass das Produkt We declare of our own responsibility, that the product Nous déclarons sous notre seule responsabilité que le type de construction du

Bezeichnung Order-No. Description N° de commande Désignation 322351 Digital-Multimeter 32235L Digital multimeter 32235L Multimètre numérique

folgenden einschlägigen Bestimmungen entspricht:

complies with the requirements of the:

est conforme aux dispositions pertinentes suivantes :

2014/35/EU 2014/30/EU

Bestell-Nr.

Angewandte Normen:

Identification of regulations / standards:

Normes appliquées :

EN 61326-1:2013(EN 55011:2009+A1:2010) EN61326-2-2:2013. EN 61000-3-2:2014. EN 61000-3-3:2013, EN 61010-1:2010

EN 61010-2-033:2012

EN61010-031:2002+A1:2008

Hersteller Unterschrift Heiner Tilly (Geschäftsführer)

Remscheid, den 04.02.2022

SW-STAHL GMBH

An der Hasenjagd 3 • D-42897 Remscheid Telefon: +49 2191 464380 • Fax: +49 2191 4643840 www.swstahl.de • info@swstahl.de